Contents

Booklet 0.1 Authors

Foreword

Updates

Contents

Practice Paper Analysis

Ways to Use This Book

GDC Skills

More Recommendations

Booklet 0.2	Formula List
Booklet 1.1	Set 1 Paper 1
Booklet 1.2	Set 1 Paper 2
Booklet 2.1	Set 2 Paper 1
Booklet 2.2	Set 2 Paper 2
Booklet 3.1	Set 3 Paper 1
Booklet 3.2	Set 3 Paper 2
Booklet 4.1	Set 4 Paper 1
Booklet 4.2	Set 4 Paper 2

The solution page of this book

https://www.seprodstore.com/ibaaslpapermaterial

OR

Practice Paper Analysis

	Paper 1	Paper 2	
Full Mark	80	80	
Time	90 Minutes	90 Minutes	
Calculator	Not allowed	Needed	
Section A	6 Short Questions		
Section B	3 Structured Questions		
	Category 1: Algebra		
	Category 2: Functions		
Topic Categories Category 3: Geome		Geometry	
	Category 4: Statistics		
	Category 5	i: Calculus	

Categories	Topics	Mark Ranges	Percentages
	Standard Form		
Category 1:	Arithmetic Sequences		
Algebra	Geometric Sequences	17 to 25 Marks	11% to 16%
Aigebra	Binomial Theorem		
	Proofs and Identities		
	Quadratic Functions		
Category 2: Functions	Functions	25 to 29 Marks	16% to 18%
	Exp. and Log. Functions	25 to 29 Marks	
	Coordinate Geometry		
Category 3: Geometry	Trigonometry		
	2-D Trigonometry	32 to 36 Marks	20% to 23%
	Areas and Volumes		
	Statistics		
	Probability		
Category 4:	Discrete Distributions	34 to 42 Marks	21% to 26%
Statistics	Binomial Distribution	34 to 42 ividins	21/0 10/20/0
	Normal Distribution		
	Bivariate Analysis		
	Differentiation		
Category 5:	Apps. of Differentiation	36 to 44 Marks	23% to 28%
Calculus	Integration	30 to 44 Marks 23% to 26%	
	Apps. of Integration		

Formula List of Analysis and Approaches Standard Level for IBDP Mathematics

Analysis & Approaches	Analysis & Approaches
Standard Level	Higher Level
Applications & Interpretation Standard Level	Applications & Interpretation Higher Level

9

Coordinate Geometry

- \checkmark Consider the points $P(x_1, y_1)$ and $Q(x_2, y_2)$ on a x y plane:
 - 1. $m = \frac{y_2 y_1}{x_2 x_1}$: Slope of *PQ*
 - 2. $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$: Distance between *P* and *Q*
 - 3. $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$: The mid-point of PQ
- \checkmark Forms of straight lines with slope m and y -intercept c:
 - 1. y = mx + c: Slope-intercept form
 - 2. Ax + By + C = 0: General form
- \checkmark Ways to find the x-intercept and the y-intercept of a line:
 - 1. Substitute y = 0 and make x the subject to find the x-intercept
 - 2. Substitute x = 0 and make y the subject to find the y-intercept

10

Trigonometry

- ✓ Trigonometric identities:
 - 1. $\tan \theta = \frac{\sin \theta}{\cos \theta}$
 - 2. $\sin^2 \theta + \cos^2 \theta = 1$
- ✓ Double angle formula:
 - 1. $\sin 2\theta = 2\sin \theta \cos \theta$
 - 2. $\cos 2\theta = 2\cos^2 \theta 1 = 1 2\sin^2 \theta = \cos^2 \theta \sin^2 \theta$
 - 3. $\tan 2\theta = \frac{2\tan \theta}{1-\tan^2 \theta}$

Analysis and Approaches Standard Level for IBDP Mathematics Practice Paper Set 1 – Paper 1 (90 Minutes)

Question – Answer Book

Instructions

- This paper consists of TWO sections:
 A and B.
- 2. Attempt ALL questions. Write your answers in the spaces provided in this Question Answer Book.
- 3. No calculator is allowed.
- 4. You are suggested to prepare a formula booklet of Analysis and Approaches for IBDP Mathematics when attempting the questions.
- 5. Supplementary answer sheets and graph papers will be supplied on request.
- **6.** Unless otherwise specified, **ALL** working must be clearly shown.
- Unless otherwise specified, numerical answers should be either EXACT or correct to 3 SIGNIFICANT FIGURES.
- **8.** The diagrams in this paper are **NOT** necessarily drawn to scale.
- **9.** Information to be read before you start the exam:

	Marker's	Examiner's		
	Use Only	Use Only		
Question Number	Marks	Marks	Maximum Mark	
Section A				
1			6	
2			6	
3			5	
4			6	
5			8	
6			8	
Section A			39	
Total				
Section B				
7			15	
8			14	
9			12	
Section B			41	
Total				
	Overall			
Paper 1			80	
Total				

Section A (39 marks)

1. The following Venn diagram shows the events A and B, where P(A) = 0.6. The values in the diagram are probabilities.

- (a) Find m.
- (b) Find *n*. [2]

[2]

(c) Find P(B'). [2]

4.	(a) Show that $(2n+1)^2 + (2n+3)^2 + (2n+5)^2 = 3(4n^2 + 12n + 11) + 2$, where $n \in \mathbb{Z}$.				
	(b) Hence, or otherwise, prove that the sum of the squares of ar consecutive odd numbers is greater than a multiple of 3 by				
			[3]		

9.	The graph of f is given by $f(t) = a \sin b(t-c) + d$, $a > 0$, $t \ge 0$. When $t = 2$, there is a maximum value of 37, at P. When $t = 11$, there is a minimum value of -5 . The graph of f is strictly decreasing at $2 < t < 11$. (a) (i) Show that $a = 21$.			
		(ii)	Find the exact value of b .	
		(iii)	Find the value of d .	
		(iv)	Write down a possible value of $\it c$.	[7]
			f is then transformed to the graph of g by a horizontal stretch	
	of sca	le facto	or 3, followed by a translation of $\binom{17}{8}$. Let P' be the image of P	٠.
	(b) Find the coordinates of P'.			[2]
	The graph of g is then transformed to the graph of h by a translation			
	(c) Give a full geometric description of the transformation that maps to graph of h to the graph of f .			
				[3]
_				
_				
_				
_				
_				
_				

AA SL Practice Set 1 Paper 1 Solution

Section A

1. (a)
$$m+0.2=0.6$$

 $m=0.4$

(b)
$$n+0.4+0.2+0.1=1$$

 $n=0.3$

(c)
$$P(B') = 0.4 + 0.3$$

 $P(B') = 0.7$

2. (a) The mean
$$=\frac{300}{15}$$

(ii) The new variance
=
$$(-2)^2(9)$$

= 36

(M1) for valid approach

A1 N2

(A1) for substitution

A1 N2

(M1) for valid approach

A1 N2

(M1) for valid approach

A1 N2

A1 N1

(M1) for valid approach

A1 N2

A1 N1

[4]

[2]

[2]

[2]

[2]